A Characterization of State Spill in Modern Operating Systems

Kevin Boos, Emilio Del Vecchio, and Lin Zhong

Advanced OS goals are challenging Classification of state spill Automated detection with STATESPY
Goal in OS literature Impediments to that goal Based on four common OS entity design patterns: d = Running
Process migration Residual dependencies on original system Szlt;rsce | BTN || | "
Fault isolation/tolerance, ~ Sprawl of states introduces fate sharing, Client Indirection Layers convert between \Jr entity
software virtualization complicates isolation & multiplexing logic , ,
| o o | 5 high-level and low-level representations Resolution requests
Live update and Cannot modify individual entity in isolation; ‘g _ f dat d d . > . Stat 0
hot-swapping state transfer functions are non-trivial highivlj OT ddta ana commands. Stath - Runtlme ate spi
ST o e Virtual File System abstraction analysis Modification-reachable | gnalysis results
Maintainability Coupling remains despite modularization indirection . whitelist
Security Loss of control over propagated data —— T owi| @ Process abstraction
: e Microkernel userspace servers T Runtime type resolutions
e : Resource ® Device drivers
State Spl// s the underlymg Cause 1) Detect quiescent point for safe analysis
o e : -- monitor transaction entry & exit points
State spill is the act of a software entity’s state Multiplexers temporally or Client | | Client || Client 5 Cabture state of software entit
underaoin lasti h It of spatially share an underlying |) ptu y
going a fasting change as a Tesult o ltiple client -- key insight: use debugging frameworks
handling a transaction from another entity ESOUTCE ambllg MULPIE CISTES. é 4 It 99ing
' ® Schedulers / process mgmt 3) Difference captured states
e \Window managers : L g : :
bublic class SystemService { e High-level drivers =— ~ via existing tr.ee com.parlson a!gorlthms
static int sCount; 4) Filter results with static analysis
byte mccl’g‘;igli bk -- determine modification reachability
List<Ca ack> mCa acks; -
int unrelated: Client Dispatchers register client callbacks
/ to properly deliver events or messages. 11 . .
public void addCallback(int id, reg‘L / 5 e Device event callbacks State Splll in Android SyStem SErviICes
iniygezcga,callb“k cb) A \ """ msg : a;zm;omzatlon primitives e STATESPY found state spill in 94% of Android
Log.print("id=" + b); /Th‘s nethod is\ e IPC layers services analyzed, most with 1-10 instances
this.mContig = cf; a transaction Sender e Classified state spill instances in 60 transactions:
this.mCallbacks.add(cb); nandler invoked Client o 39% caused by indirection layers
sCount++; i~ At _
) Oy application , , | P// o 21% caused by multiplexers
\Drocesse& / Inter-Entity Collaboration requires o 55% from dispatchers/collaboration
) synchronization of non-orthogonal Common'7'> 7 P
common
states to ensure correctness. e Better discovery of problems in app migration than
Entity granularity dictates state spill ® Microkernel userspace servers orthog. | | orthog. manual identification of residual dependencies !
e Android services
State spill is relative to the chosen entity granularity. Ent 1 Ent 2 e Discovered secondary spill in 27 services:
Low-level entity interactions (shaded) are unimportant. T
KSystem A DESignS to aVOid State Spi II (UiModeManfggr;;e) (VibratorService) (KeyguardService) (AIarmManagerService) (UsbServicem\udioQService)
i Process /-_N) (Process \ . . (InputManagerSﬁ (ActivityManagerService) (HdmiControIService)
) o . e Client-provided resources —
Module/Class Module/Class : : RESTTul — e — . < -
____________ ® Stateless Communlcatlon rInCI |eS (NotificationManagerService) (DisplayManagerService) yManafer ervice) (UserManagfr ervice)
FuncI:’;ion 1 (Fur?ction | [FuncI:tion 1 [Fur:ction) "t ‘ Hardening Of entity State p p (StatusBarManagerService) (WindowManagerServicej (SensorServicej (PackageManagerService)
) g e Modularity without interdependence
\C —) — - . I / ® Separatign of mu|tip|exing from indirection [1] Alex Van’'t Hof, et al., Flux: Multi-Surface Computing in Android, EuroSys’15.

