
 public class SystemService {
 static int sCount;
 byte mConfig;
 List<Callback> mCallbacks;
 int unrelated;

 public void addCallback(int id,
 byte cf, Callback cb) {
 int b = id;
 Log.print("id=" + b);
 this.mConfig = cf;
 this.mCallbacks.add(cb);
 sCount++;
 }
 }

A Characterization of State Spill in Modern Operating Systems
Kevin Boos, Emilio Del Vecchio, and Lin Zhong

Based on four common OS entity design patterns:

Indirection Layers convert between
high-level and low-level representations
of data and commands.
● Virtual File System abstraction
● Process abstraction
● Microkernel userspace servers
● Device drivers

Multiplexers temporally or
spatially share an underlying
resource among multiple clients.
● Schedulers / process mgmt
● Window managers
● High-level drivers

Dispatchers register client callbacks
to properly deliver events or messages.
● Device event callbacks
● Synchronization primitives
● Upcalls
● IPC layers

Inter-Entity Collaboration requires
synchronization of non-orthogonal
states to ensure correctness.
● Microkernel userspace servers
● Android services

ᴛᴀᴛᴇ ᴘʏ

1) Detect quiescent point for safe analysis
 -- monitor transaction entry & exit points

2) Capture state of software entity
 -- key insight: use debugging frameworks

3) Difference captured states
 -- via existing tree comparison algorithms

4) Filter results with static analysis
 -- determine modification reachability

● SᴛᴀᴛᴇSᴘʏ found state spill in 94% of Android
services analyzed, most with 1-10 instances

● Classified state spill instances in 60 transactions:
○ 39% caused by indirection layers
○ 21% caused by multiplexers
○ 55% from dispatchers/collaboration

● Better discovery of problems in app migration than
manual identification of residual dependencies [1]

● Discovered secondary spill in 27 services:

● Client-provided resources
● Stateless communication
● Hardening of entity state
● Modularity without interdependence
● Separation of multiplexing from indirection

● Process migration residual dependencies
● Fault isolation/tolerance and software virtualization –

fate sharing
● Live update & hot-swapping – state transfer functions
● Software virtualization – shared states
● Maintainability – coupling despite modularity
● Security – loss of control over

This method is
a transaction
handler invoked
by application
processes.

[1] Alex Van’t Hof, et al., Flux: Multi-Surface Computing in Android, EuroSys’15.

State spill is relative to the chosen entity granularity.
Low-level entity interactions (shaded) are unimportant.

Goal in OS literature Impediments to that goal
Process migration Residual dependencies on original system

Fault isolation/tolerance,
software virtualization

Sprawl of states introduces fate sharing,
complicates isolation & multiplexing logic

Live update and
hot-swapping

Cannot modify individual entity in isolation;
state transfer functions are non-trivial

Maintainability Coupling remains despite modularization

Security Loss of control over propagated data

State spill is the act of a software entity’s state
undergoing a lasting change as a result of
handling a transaction from another entity.

RESTful
principles

